Be-Stern ζ (zeta) Tau im Bereich Hα Kalibrierung eines 1200L/mm DADOS-Spektrums mit einer Neon-Referenzlampe

Wellenlängenkalibrierung – Normierung Äquivalentbreite EW - V/R-Verhältnis – Tiefe der zentralen Absorption CA – Heliozentrische Radialgeschwindigkeit HRV

Tutorial 1.1 Dipl.-Phys. Bernd Koch

Inhalt

	2
1.2 Festlegung der Messgrößen	5
2. Die Kalibriereinheit	6
3. ζ Tau Summenspektrum und Neon-Referenzspektrum	8
4. BASS starten	9
4.1. Spektren in BASS öffnen	10
4.2 Voreinstellungen vornehmen	11
5. Sternspektrum und Referenzspektrum horizontal ausrichten	13
6. Auswahl des Scanbereichs für Spektrum und Himmelshintergrund	15
7. Einzelne Spektralbereiche genauer betrachten	19
8. Wellenlängenkalibrierung	20
8.1 Das Neon-Referenzspektrum	20
8.2 Wellenlängenkalibrierung des Spektrums des Referenzspektrums	21
8.3 Übertragung der Wellenlängenkalibrierung auf das Spektrum von zeta Tau	28
9. Normierung der relativen Intensität des Spektrums	29
9.1 Pseudokontinuum entfernen	29
9.2 Normierung auf "1"	33
	34
9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität)	
9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität)10. Beschriftung des normierten Spektrums	
 9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität) 10. Beschriftung des normierten Spektrums 11. Notizen erstellen und einblenden 	35 36
 9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität) 10. Beschriftung des normierten Spektrums 11. Notizen erstellen und einblenden 12. Speichern eines 1D-Profils (Wellenlänge, Intensität) im FITS-Format 	35 36 36
 9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität) 10. Beschriftung des normierten Spektrums 11. Notizen erstellen und einblenden 12. Speichern eines 1D-Profils (Wellenlänge, Intensität) im FITS-Format 13. Datenerfassung im 1D-Profil für die BeSS-Datenbank 	
 9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität)	35 36 36 37 37
 9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität) 10. Beschriftung des normierten Spektrums 11. Notizen erstellen und einblenden 12. Speichern eines 1D-Profils (Wellenlänge, Intensität) im FITS-Format 13. Datenerfassung im 1D-Profil für die BeSS-Datenbank	
 9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität) 10. Beschriftung des normierten Spektrums 11. Notizen erstellen und einblenden 12. Speichern eines 1D-Profils (Wellenlänge, Intensität) im FITS-Format 13. Datenerfassung im 1D-Profil für die BeSS-Datenbank	
 9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität)	35
 9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität)	35
 9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität)	35
 9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität)	35

Der Gruppe beitreten und Software downloaden: https://groups.io/g/BassSpectro

 ζ Tau ist ein interessanter spektroskopischer Doppelstern in rund 400 Lj. Entfernung. Seine hohe scheinbare Helligkeit von 3 mag. prädestiniert ihn für die Spektroskopie auch mit kleineren Teleskopen. Sinnvolle spektroskopische Auswertungen erfordern jedoch ein spektrales Auflösungsvermögen von R > 4000, welches unter anderem der DADOS mit den Gittern 900 L/mm und 1200 L/mm ermöglicht.

Die Literaturdaten zum Stern sind uneinheitlich. Der Spektraltyp des ca. 15500K heißen Sterns wird unterschiedlich angegeben: B1 IVe shell (SIMBAD), B2 IVe, B2 IIIpe. Sicher ist, dass er von einer leuchtenden Wasserstoffscheibe umgeben ist.

Die Rotationsgeschwindigkeit des einzig in Erscheinung tretenden Hauptsterns beträgt 320-330 km/s¹. Die Fliehkräfte aufgrund der hohen Rotations-geschwindigkeit sind die Ursache der etwa 100 Sonnendurchmesser großen äquato-

rialen Gasscheibe um den Hauptstern. Sie leuchtet in Form eines sich periodisch verändernden Doppelpeakprofils, welches durch eine V- und eine R-Komponente geprägt ist.

Obsorvativ	on data
Epoch J2000.0 Equi	nox J2000.0 (ICRS)
Constellation	Taurus
Right ascension	05 ^h 37 ^m 38.68542 ^{s[1]}
Declination	+21° 08' 33.1588"[1]
Apparent magnitude (v)	3.010 ^[2]
Character	ristics
Spectral type	B2 IIIpe ^[4]
U-B color index	-0.749 ^[2]
B-V color index	-0.164 ^[2]
Variable type	Eclipsing + v Cas ^[3]
Astrom	etry
Padial valacity rs y	· 20 ^[5] km/a
Radial velocity (R _v)	+20 ¹⁻³ Km/s
Proper motion (µ)	Dec.: -20.07 ^[1] mas/yr
Parallax (n)	7.33 ± 0.82 ^[1] mas
Distance	approx. 440 ly (approx. 140 pc)
Absolute magnitude (M _V)	-2.67 ^[6]
Orbit	[4]
Period (P)	132.987 d
Semi-maior axis (a)	1.17 AU
Eccentricity (e)	0.0 (assumed)
Inclination (i)	92.8°
Longitude of the node (Ω)	-58.0°
Periastron epoch m	2.447.025.6 HJD
Argument of periastron (w	0.0 (assumed)°
(secondary)	
Semi-amplitude (K1)	7.43 km/s
(primary)	
Detai	ls
ζ Tau	Α
Mass	11.2 ^[4] M _☉
Radius	5.5 ^[4] R _☉
Luminosity	4,169 ^[7] L _☉
Temperature	15,500 ^[7] K
Rotational velocity (v sin i)	125 ^[8] km/s
Age	22.5 ± 2.6 ^[9] Myr
ζ Tau	В
Mass	0.94 ^[4] <i>M</i> ⊙

¹ Quelle: Ernst Pollmann

BeSS-Datenbank, http://basebe.obspm.fr/basebe/

Be Stern : zet Tau	Jaschek & Egret, 1982, IAUS 98, 261
HD Nummer : 37202	
Koordinaten : 05 37 38.69 +21 08 33.16 (2000)	van Leeuwen, 2007, A&A 474, 653
V magnitude : 3.03	Simbad database, CDS
Spektraltyp : B2IVe	Simbad database, CDS
Teff : 21500 K	Chauville, Zorec, Ballereau et al., 2001, A&A 378, 861
logg : 4.22	Chauville, Zorec, Ballereau et al., 2001, A&A 378, 861
vsini : 245 ±33 km/s	Chauville, Zorec, Ballereau et al., 2001, A&A 378, 861
Inclinationswinkel : 79 degrés	Chauville, Zorec, Ballereau et al., 2001, A&A 378, 861
Entfernung : 136 [123-154] pc	van Leeuwen, 2007, A&A 474, 653
Radialgeschwindigkeit : 20 ±5 km/s	Evans, 1967, IAUS 30, 57

Doch ganz so einfach ist das Modell nicht. Mit einer Periode von 1471 ± 15 Tagen präzediert eine Wasserstoffscheibe, die eine lokale Verdichtung aufweist. Eine weitere Zyklusperiode beträgt 69 Tage.

Schließlich ist eine weitere Periode von 442 +/-5 Tagen ist in der Lage der Zentralen Absorptionseinsenkung zu finden².

² Quelle: Ernst Pollmann, Unterlagen zum Herbstkurs Sternspektroskopie 2017 am CFG Wuppertal

Be-Stern ζ Tau (B2 IVe) Kalibrierung mit einer Neon-Lampe im Bereich H α

Multi-epoch Near-Infrared Interferometry of the Spatially Resolved Disk Around the Be Star ζ Tau (Schaefer et al., <u>http://arxiv.org/abs/1009.5425</u>) und Ernst Pollmann

Be-Stern ζ Tau (B2 IVe) <u>Kalibrierung mit einer Ne</u>on-Lampe im Bereich Hα

1.2 Festlegung der Messgrößen

Im von Ernst Pollmann moderierten Langzeit Monitoring sind folgende Messgrößen bei der H α -Linie zu ermitteln:

- > $H\alpha$ -Äquivalentbreite EW: 6520Å-6600Å
- > Intensität des H α V-Peaks
- > Intensität des H α **R**-Peaks
- > V/R-Verhältnis der H α -Linie
- > Tiefe der zentralen Absorption CA
- \blacktriangleright Heliozentrische Radialgeschwindigkeit HRV des H α -Absorptionsminimums (CA, Central Absorption)

2. Die Kalibriereinheit

Diese einfach zu realisierende Selbstbau-Kalibriereinheit beruht auf dem TSFLIP³ und zeichnet sich dadurch aus, dass unterschiedliche Lichtquellen, wie hier die helle, sehr empfehlenswerte Baader Neon-Kalibrierlampe (#2458590) eingeblendet werden können. Man schraubt die 2-Zoll Steckhülse TST2-2 auf den Guiderausgang des TSFLIP und fasst die Lichtquelle mit der Hülse TSVF230.

Dann setzt man die Guidereinheit um 180° gedreht wieder ein, so dass das Licht der Kalibrierlampe in Richtung Spektrografeneingang umgelenkt wird. Zum Ein- und Ausblenden wird die Guiderhülse ganz einfach hineinbzw. herausgeschoben.

Bemerkung:

Der Autor dankt Dr. Dieter Hess für den Hinweis auf die Eignung des TSFLIP für Kalibrierzwecke mit dem DADOS.

Alle Fotos © Bernd Koch

³ https://www.teleskop-express.de/shop/product_info.php/info/p5190_TS-Optics-2--Flip-Mirror-System----Off-Axis-Guider---kurzbauend.html

3. ζ Tau Summenspektrum und Neon-Referenzspektrum

Aufnahmedaten:

DADOS, Gitter 1200 L/mm, mittlerer Spalt: 25µm SBIG ST-8300M (KAF-8300M) im 1x1-Binning, Pixelgröße 5.4µm, CCD-Temperatur: -20°C Celestron 14 @f/8 auf 10Micron GM2000HPS Aufnahmedatum: 17.2.2018, Mitte der Aufnahme: 21:56:59 UT (JD 2458167.414572), Belichtung: 8x120s

Die Aufnahmen wurden in dieser Reihenfolge (Aufnahmebeginn) gewonnen

21.42 UT: Neon Spektrum, 10s 21.47 UT: zeta Tau, 120s 21.49 UT: zeta Tau, 120s 21.51 UT: zeta Tau, 120s 21.53 UT: zeta Tau, 120s 21.56 UT: zeta Tau, 120s 21.58 UT: zeta Tau, 120s 22.00 UT: zeta Tau, 120s 22.02 UT: zeta Tau, 120s 22.04 UT: Neon Spektrum, 10s 22.10 UT: Dark, 120s 22.12 UT: Dark, 120s 22.14 UT: Dark, 120s 22.16 UT: Dark, 120s 22.18 UT: Dark, 120s

Vorbereitung der Rohdaten in MaxIm DL

Schritt 1: Master-Darkframe (Median) aus 5x120s Einzeldarks erzeugen.

Schritt 2: Beide Neonspektren mitteln (Average): Neon.fit

Schritt 3: Von jedem zeta-Tau-Spektrum wird das Masterdark subtrahiert.

Schritt 4: Stacking der korrigierten Einzelspektren von zeta Tau (Sum, IEEE Floating Point): zeta Tau 8x120s.fit

Referenzspektren und Objektspektren müssen zeitlich nah beieinander aufgenommen werden. Grund: Der Spektrograf kann sich thermisch ausdehnen oder zusammenziehen, wenn sich die Außentemperatur ändert. Deshalb lässt man den DADOS und das Teleskop zunächst eine halbe Stunde auskühlen, bevor man beginnt. Zuerst wird ein Referenzspektrum aufgenommen, dann eine Serie von Objektspektren und zum Schluss wieder ein Referenzspektrum. Ein Flatfield wurde in diesem Fall nicht aufgenommen. Außerdem sollte der Spektralfaden bereits möglichst exakt horizontal orientiert sein, blaues Ende links, rotes rechts.

4. BASS starten

Dieses Tutorial setzt voraus, dass das Objektspektrum zeta Tau 8x120s.fit und das Neon-Referenzspektrum Neon.fit im Ordner C:/astrobodger/zeta Tau 2018-02-17/.... im Format FIT vorliegen.

Start der aktuellen Version BASSProject.exe im Ordner C:/astroboger

Das leere Arbeitsfenster eines neuen Projekts in der BASS 64-Bit-Version:

BASS arbeitet mit sogenannten "Projekten", bei denen alle verwendeten 2D-Rohspektren, Ergebnisse und Beschriftungen gespeichert werden an einem festen Speicherort, *C:/astrobodger*. Projekte werden im Format **.bass** abgespeichert. BASS meldet sich, wenn Teile des Projekts (neue oder geänderte Spektralprofile) noch nicht gespeichert wurden und fordert dann dazu auf. Änderungen an vorhandenen oder neu erzeugte Spektralprofile werden im Format **.fit** (bzw. **.dat**) abgespeichert. Das FITS-Format ist umfangreicher als das DAT-Format, weil zusätzlich zu den Datenzeilen x,y auch alle wichtigen sonstigen Informationen gespeichert werden: Datum, Uhrzeit, Belichtungszeit, Aufnahmeort, etc.

Hinweis: Der Begriff "2D" bedeutet in der Spektroskopie, dass es sich um ein Foto des Spektrums handelt, so wie man es am Teleskop aufnimmt. "1D" ist der aus dem Foto erzeugte Spektralprofil, welches nur ein Datensatz mit zwei Spalten ist: x =Position entlang des Sensors, y=Intensität in y-Richtung aufsummiert.

4.1. Spektren in BASS öffnen

Grün: unkalibriertes zeta-Tau-Spektrum. Blau: Neon-Referenzspektrum

Erläuterung: Die x-Achse ("Pixels uncalibrated") entspricht der Pixelposition in horizontaler x-Richtung auf dem Foto. Dieser Pixelwert muss in einen Wert für die Wellenlänge λ (Lambda) umgerechnet werden. Die Ermittlung des funktionalen Zusammenhangs zwischen Pixelposition (x) und Wellenlänge (λ) in Form eines Polynoms höheren Grades λ =f(x) bezeichnet man als *Wellenlängenkalibrierung*.

Die y-Achse ("Flux") gibt die Intensität an einer bestimmten Pixelposition im 1D-Spektralprofil an. Diese Intensitätskurve wird in diesem Tutorial kalibriert: Beseitigung des Pseudokontinuums (Normierung auf "1").

Speichern des Projekts unter dem Namen C:/astrobodger/zeta Tau 2018-02-17/zeta Tau 2018-02-17.bass

→ Prüfen, ob Projekt korrekt gespeichert ist: New Projekt

kt 🕅 ➔Open Project

Hinweis: Das Neon-Spektrum muss an Position 1 stehen. Falls dies nicht der Fall ist, jetzt Positionen tauschen:

→ #02 aktivieren → Rechte Maustaste → Sequence → 01

4.2 Voreinstellungen vornehmen

- ➔ Image: → Project Chart Settings: Hier alle Daten eingeben.
- → Main Title und Sub Title speichern

🥦 Chart Setti	ngs	×
Ranges Chart C	Notes Legend Binning Elements Colours X Axis Y Axis Fonts Advance	d
Main title	zeta Tau 2018-02-17	j
Sub title	DADOS 1200 L/mm	Ī
Chart width	1800 Chart height 800	
lmage strip height	25	
Background chart image		
Default	Ok Apply Cance	
	Cit / ppiy Carlos	

Chart Settings ×	🎦 Chart Settings 🛛 🕹
Ranges Notes Legend Binning Elements I Chart Colours X Axis Y Axis Fonts Advanced	Ranges Notes Legend Binning Chart Colours X Axis Y Axis Fonts Advanced
Main title zeta Tau 2018-02-17 Sub title DADOS 1200 L/mm	Show X-axis gridlines X-axis raw text Pixels (uncalibrated) X-axis calibrated text Wavelength ({0})
Chart width 1800 Chart height 800 Image strip height 25 Background chart image .	Doppler Shift Show Doppler shift axis Rest wavelngth (Å) Velocity km/s ({0}{1})
Default Ok Apply Cancel	Default Ok Apply Cancel
Chart Settings X	Chart Settings ×
Ranges Notes Legend Binning Elements Chart Colours X Axis Y Axis Fonts Advanced	Chart Colours X Axis Y Axis Fonts Advanced Ranges Notes Legend Binning
✓ Show Y-axis gridlines Y-axis labels Show Values ▼ *Taken from TOP profile	Processing range (Å) Start 3600 End 9000
Y-axis text Flux Note: The Y-Axis scaling values are determined by the top profile. See Y-Axis tab of the Profile Properties screen.	Continuum range for flux normalisation (Å) Start 5500 End 5550
Default Ok Apply Cancel	Default Ok Apply Cancel
Chart Settings X	🕅 Chart Settings 🛛 🗙
Ranges Notes Legend Binning Chart Colours X Axis Y Axis Fonts Advanced	Chart Colours X Axis Y Axis Fonts Advanced Ranges Notes Legend Binning Elements
	✓ Show sequence number in legend
Wavelength unit Angstrom 1x10-10m	Show line style in legend
Graphics antialiasing Antialiasing (default)	Legend display option Transparent text
Apply response correction on image open	
Default Ok Apply Cancel	Default Ok Apply Cancel

Chart width: CFG Medion-Notebooks ca. 1150 / Chart height: 450 (hängt von der Größe des Bildschirms ab)

→ Speichern des Projekts unter dem Namen C:/astrobodger/zeta Tau 2018-02-17/zeta Tau 2018-02-17.bass

5. Sternspektrum und Referenzspektrum horizontal ausrichten.

Zuerst werden die Captions (Namen) der Scans geändert

- → Neon.fit umbenennen in Neon-Referenz
- → zeta tau 8x120s.fit umbenennen zeta tau in VV Cep

Profile Properties: 02 zeta Tau 8x120s.fit	Profile Properties: 01 Neon.fit
General Line Y-Axis Calibration Response	General Line Y-Axis Calibration Response
General properties	General properties
Sequence 02	Sequence 01
Caption Zeta Tau 2018-02-17	Caption Neon-Referenz
Filename C:\astrobodger\zeta Tau 2018-02-17\zeta Tau 8x120	Filename C:\astrobodger\zeta Tau 2018-02-17\Neon.fit
Image strip ignores Y axis scaling	Image strip ignores Y axis scaling
FITS BEESS	FITS BESS
Ok Apply Close	Ok Apply Close

Spektren horizontal ausrichten

- → Image Strip View
 → Raw Image 50%
 → Spektrum #02 (zeta Tau) aktivieren
 → Image → Rotate/Tilt correction
- ➔ Select Region, Tilt Image, Emission, Apply to all open images wählen.

01: Neon-Referenz

-02: zeta Tau 2018-02-17

→ Dann mit der Maus um das Spektrum einen Rahmen aufziehen:

→ Apply → Close

Nun sind beide Spektren gleichermaßen um einen Winkel von 0.63° horizontal ausgerichtet.

Eine Smile/Slant-Korrektur muss hier nicht vorgenommen werden, da im genutzten Spektralbereich des Sternspektrums die Linien gerade sind und senkrecht auf dem Spektrum stehen.

Abspeichern der beiden gedrehten Spektren: Save the selected image strip (selbe Namen)

Speichern des Projekts: Unter dem selben Namen

6. Auswahl des Scanbereichs für Spektrum und Himmelshintergrund

- → Sternspektrum #02 auswählen
- → Image Strip View: 100%
- → Selection → Region Selection Tool

-

Es erscheint das Menüfenster Region Selection Tool.

→ Verändere die Werte für *Y Start* und *Y End*, bis der Rahmen das Spektrum in nahezu voller Höhe umfasst. Die Breite wird automatisch angepasst.

Region S	election	Tool			×		
📋 Сор	у	🔁 Py	thon				
Profile	02: zeta	Tau 20	18-02-17				
Region	Type A	ctive Bin	ined Regi	on	•		
X Start	2305	<u>^</u>	Y Start	1403	∃		
X End	2380		Y End	1416	-		
Width	76		Height	14	$\overline{}$		
Stats M RMS:4	Min:16274 6312 Std	Max:83 Dev:15	3341 Avg 276 SNR	:43720 :2.862	Û		
	Remo	ove	Update	Clo	ose		
							1000

Hinweis: Unklar ist, inwieweit die Statistik der aktiven Binning-Zone hinsichtlich der Erzielung eines optimalen SNR innerhalb des Scanbereichs verwendet werden kann.

Nun werden die beiden Regionen für den Himmelshintergrund oben/unten definiert:

Manuelle Festlegung der beiden Himmelshintergrundbereiche oben/unten:

- → Substraction Region 1 (für Himmel "oben", also oberhalb des Sternspektrums)
- ➔ Rahmen aufziehen für Himmel "oben"

Region Sel	ection Tool			¢	
📔 Сору	🐣 P	ython			
Profile 0	02: zeta Tau 20)18-02-17			
Region Ty	pe Subtracti	on Region	1	-	
X Start	2408 🕂	Y Start	1342	÷	
X End	2571 🕂	Y End	1385	*	
Width	163	Height	43		
Stats Min RMS:762	n:328.29 Max: 2.19 Std Dev:1	2245.4 Av 10.48 SN	g:754.14 R:6.8258	< >	
	Remove	Update	Clos	se	
				_	

→ Update. Der Rahmen wird automatisch über die ganze Breite aufgezogen.

- ➔ Substraction Region 2 (Himmel ,,unten", also unterhalb des Sternspektrums)
- ➔ Rahmen aufziehen für Himmel "unten"

Copy Python Profile 02: zeta Tau 2018-02-17 Region Type Subtraction Region 2 X Start 2235 Y Start 1444 X End 2447 Y End 1489 Width 212 Height 45 Stats Min:187.53 Max:1184.7 Avg:738.24 RMS:746.06 Std Dev:107.71 SNR:6.854 Remove Update	Region Selection	on Tool		_				
Profile 02: zeta Tau 2018-02-17 Region Type Subtraction Region 2 X Start 2235 Y Start 1444 X End 2447 Y End 1489 Width 212 Height 45 Stats Min:187.53 Max:1184.7 Avg:738.24 RMS:746.06 Std Dev:107.71 SNR:6.854 Remove Update Close	📋 Сору	🥐 Pj	thon					
Region Type Subtraction Region 2 X Start 2235 Y Start 1444 X End 2447 Y End 1489 Width 212 Height 45 Starts Min:187.53 Max:1184.7 Avg:738.24 RMS:746.06 Std Dev:107.71 SNR:6.854 Remove Update Close	Profile 02: z	eta Tau 20	18-02-17					
X Start 2235	Region Type	Subtractio	on Region 2		-			
X End 2447 Y End 1489 Width 212 Height 45 Stats Min:187.53 Max:1184.7 Avg:738.24 RMS:746.06 Std Dev:107.71 SNR:6.854 Remove Update Close	X Start 2235	<u>A</u>	Y Start	1444	÷			
Width 212 Height 45 Stats Min:187.53 Max:1184.7 Avg:738.24 RMS:746.06 Std Dev:107.71 SNR:6.854 Remove Update Close	X End 2447	7	Y End	1489	-			
Stats Min:187.53 Max:1184.7 Avg:738.24 RMS:746.06 Std Dev:107.71 SNR:6.854 Remove Update Close	Width 212		Height .	45				
	RIMIS: 746.06	emove	Update	Close	•			

Und das ist das Ergebnis der Festlegung der Bereiche:

- → Update → Close
 - Bildschirm-Refresh nicht vergessen!!

Nun wird NUR die "Active Binning Zone", also der Bereich des Sternspektrums VV Ceps, der gescannt wird, auf das Referenzspektrum übertragen:

- → Mit linker Maustaste in das Spektrum 01: Neon-Referenz aktivieren
- → Mit rechter Maustaste in das Spektrum 01: Neon-Referenz klicken
- → Copy Active Binned Region from
- → 02: zeta Tau 2018-02-17

Ergebnis: Es sind alle benötigten Bereiche in beiden Spektren definiert:

Speichern des Projekts

→

Das grüne Spektrum von zeta Tau ist das Resultat folgender Operation:

Intensität des Spektrums von zeta Tau = Intensität der Active Binning-Zone – Intensität (Himmel oben + Himmel unten)/2

7. Einzelne Spektralbereiche genauer betrachten

- → Beispiel: H α -Linie
- ➔ Ziehe mit der linken Maustaste einen Bereich von ca. 2100px bis 2800px auf

8. Wellenlängenkalibrierung

8.1 Das Neon-Referenzspektrum

Die Wellenlängendatei befindet sich im Ordner c:/astrobodger/Reference/Neon.dat (NEU!)⁴

2417 0025	No T	5944.8342	NeI		
3417.9035	Nel	5975.534	NeI	8300.3263	NeI
3472.5711	Nel	6029.9971	NeI	8377.6065	NeI
3515.1900	Nel	6074.3377	NeI	8495.3598	NeI
3593.5263	Nel	6096.1631	NeI	8591.2583	NeI
3600.1691	NeI	6128.4499	NeI	8634.647	NeI
4488.0926	NeI	6143.0626	NeI	8654.3831	NeI
4636.125	NeI	6163.5939	Net	8655.522	Net
4837.3139	NeI	6217 2812	Net	8679 493	Net
5005.1587	NeI	6266 495	Net	8681 921	Net
5031.3504	NeI	6304 790	Net	9704 111	Net
5104.7011	NeI	6304.789	Nel	0771 656	Net
5113.6724	NeI	6334.4278	Nel	8771.656	Nei
5144.9384	NeI	6382.9917	Nel	8780.621	Nel
5188.6122	NeI	6402.246	Nel	8783.75	Nel
5330.7775	NeI	6506.5281	NeI	8830.907	NeI
5341.0938	NeI	6532.8822	NeI	8853.867	NeI
5360.0121	NeI	6598.9529	NeI	8919.5007	NeI
5400.5617	Nel	6678.2764	NeI	9148.672	NeI
5562.7662	Net	6717.043	NeI	9201.759	NeI
5656 5664	Net	6929.4673	NeI	9300.853	NeI
5689 8163	Net	7024.0504	NeI	9326.507	NeI
5009.0105	Net	7032.4131	NeI	9425.379	NeI
5719.2248	Nel	7173.9381	NeI	9486.68	NeI
5748.2985	Nel	7245.1666	NeI	9534.163	NeI
5/64.4188	Nel	7438.899	NeI	9665.424	NeI
5804.4496	Nel	7488.8712	NeI	10798.12	NeI
5820.1558	NeI	7535.7739	NeI	10844.54	NeI
5852.4878	NeI	8136.4057	NeI	11143.02	NeI
5881.895	NeI				

⁴ http://www.astrosurf.com/buil/us/spe2/hresol4.htm

Be-Stern ζ Tau (B2 IVe) <u>Kalibrierung</u> mit einer Neon-Lampe im Bereich H α

8.2 Wellenlängenkalibrierung des Spektrums des Referenzspektrums

Hinweis: Die Kalibrierung wird hier nicht über das gesamte Spektrum durchgeführt, sondern nur im Bereich um H α . Dies sind die hier verwendeten acht Referenzlinien mit dem vorweggenommenen Ergebnis der Kalibrierung. In die Nähe dieses Ergebnisses wollen wir gelangen.

- → Enter Line Calibration Mode
- → Erste Referenzline 6334.4278Å eng eingrenzen
- → Element filter: Neon.dat auswählen

➔ Add Another Point

	Deferentine	ong oingronzon.	6202 0017 Å
~	Referenzine	eng eingrenzen:	0382.991/A

	T	Marine N	Λ.			
P Calibration F	Reference Points		× N,	man m		
Element filter	Neon	•	[Default] 💌	VYY	Ô.	
Enter or select wavelength (Å) for point #2	Neon Ne I - 6382.	9917 🖵	Suggest		. My may	mad
Barycentre	Add Another Poi	nt Finish	Cancel		V	Maria
Num Pixel	Wavelength	Error	D			
1 1843.12	6334.428	0				
2 1948.25	6382.992	0	m			
Calibration fit	1 Linear	•				
RMS error (Å)	0					
Coefficients	548.3015701668	76, 0.04619408400824	441			
1200	1400	1600 Pixels (ur	1800 ncalibrated)	2000) 2200	2400

➔ Add Another Point

➔ Referenzline eng eingrenzen: 6402.246Å

	Element f Enter or s waveleng for point	ilter select gth (Å) #3 centre	eference Points Neon Neon Ne I - 640; Add Another Pi	2.246 V Finish	X [Default] ▼ Suggest Cancel	my	Mur	m
1	Num 1 2 3	Pixel 1843.12 1948.25 1990.01	Wavelength 6334.428 6382.992 6402.246	Error -0.0048828125 0.0164794921875 -0.0115966796875				
	Calibratic RMS em Coefficie	on fit or (Å) ents	1 Linear 0.01197077692: 548.338904460	▼ 33038 761, 0.0461740805479	9442			
	12	00	1400	1600 Pixels (1800 uncalibrated)) 20	2200	0 2400

Be-Stern ζ Tau (B2 IVe) <u>Kalibrierung mit einer Ne</u>on-Lampe im Bereich Hα

- ➔ Add Another Point
- ➔ Referenzline eng eingrenzen: 6506.5281Å
- ➔ Suggest bietet an: Die korrekte Wellenlänge 6506.5281Å wird angeboten

- ➔ Add Another Point
- ➔ Referenzline eng eingrenzen: 6532.882Å
- ➔ Suggest bietet an: 6532.882Å

•••••	M ^{ando} M ^{ando} Plant	bration Re	ference Points	
	Element Enter or wavelen for point	filter select gth (Å) #5 centre	Neon Neon Ne I - 653 Add Another P	Image: Cancel
	Num	Pixel	Wavelength	Error
•••••	1	1843.12	6334.428	0.0726318359375
	2	1948.25	6382.992	-0.0189208984375 💼
	3	1990.01	6402.246	-0.091552734375 💼
	4	2215.11	6506.528	0.010986328125 💼
	5	2272.02	6532.882	0.0262451171875 💼
	Calibratio	on fit	1 Linear	
	RMS en	or (Å)	0.05445143293	338158
	Coefficie	ents	548.133579822	2424, 0.046281272015949
JĽ				
00		1600 Pixels (1 uncalibrate	1800 2000 2200 2400 ed)

2 Quadratic 0.0212240925103999

➔ Calibration fit umstellen auf 2 Quadratic (Polynom zweiten Grades). Restfehler nun: 0.02122Å

- ➔ Add Another Point
- ➔ Referenzline eng eingrenzen: 6598.9529Å
- ➔ Suggest bietet an: 6598.9529Å

E Fr wa fo	Calil ement f nter or s aveleng r point	bration Re filter select gth (Å) #6 centre	Provide Add Another P	▼ 8.9529 ▼ (Point Finish	(Default) Suggest Cancel	www.			
	Num	Pixel	Wavelength	Error	D			للمسري	
	1	1843.12	6334.428	-0.00244140625	<u><u></u></u>				
	2	1948.25	6382.992	0.0225830078125	亩				
	3	1990.01	6402.246	-0.025634765625	Ö				
	4	2215.11	6506.528	0.02197265625	1 1 1				
	5	2272.02	6532.882	-0.018310546875	â				
	6	2414.31	6598.953	0.0018310546875	1 1 1				
C	alibratio MS em	on fit or (Å)	3 Cubic	90125					
c	oefficie	ents	550.670444999	9771, 0.04320111180808	388, 1.190844				
	J							3 Cubi	c 🔽
00		160 Pixels	0 s (uncalibrat	1800 2 ted)	000	2200	24	c 0.0182	323907090125

→ Calibration fit umstellen auf 3 Cubic (Polynom dritten Grades). Restfehler nun: 0.018Å

- ➔ Add Another Point
- ➔ Referenzline eng eingrenzen: 6678.276Å
- ➔ Suggest bietet an: 6678.276Å

- ➔ Add Another Point
- Referenzline eng eingrenzen: 6717.043Å
- → Suggest bietet an: 6717.043Å

→ Vorläufiger Restfehler nun: 0.016Å

Es ist nicht sinnvoll, hier einen höheren Polynomgrad als 3 oder maximal 4 zu wählen. Der Dispersionsverlauf des Spektrografen entspricht einer flachen Kurve, die sich nur gerinfügig von einer linearen Funktion unterscheidet.

Wir können probieren, die Genauigkeit durch Deaktivieren bzw. Löschen der ungenauesten der 8 Linien zu erhöhen. Betrachten wir, wie sich die Deaktivierung auf den Bereich um die H α -Linie herum auswirkt.

Da wir später den Bereich der H α -Linie ausmessen wollen, interessiert uns dieser Bereich besonders.

P	P Calibration Reference Points ×						
Ele	ement f	filter	Neon	▼ [Default] 💌		
Enter or select wavelength (Å) for point #8		select gth (Å) #8	Neon Ne I - 671	7.043	Suggest		
Barycentre			Add Another Point Finish		Cancel		
	Num	Pixel	Wavelength	Error	D		
	1	1843.12	6334.428	-0.0030517578125	亩		
	2	1948.25	6382.992	0.0238037109375	亩		
_	3	1990.01	6402.246	-0.0250244140625	亩		
_	4	2215.11	6506.528	0.0213623046875	亩		
_	5	2272.02	6532.882	-0.01953125	亩		
_	6	2414.31	6598.953	0.00244140625	亩		
	7	2585.04	6678.276	0.001220703125	Ô		
	8	2668.45	6717.043	-0.0006103515625	Ö		
Calibration fit 3 Cubic							
RMS error (Å)		or (Å)	0.015999187780				
Coefficients		ents	550.79897115287, 0.0430185175930755, 1.2768912				

Hinweis: Seit Version 1.9.8b4 kann man "ungenaue" Stützpunkte deaktivieren/aktivieren und das Polynom jeweils neu berechnen lassen: Man setzt ein Minuszeichen vor die Pixelposition einer Linie, die nicht berücksichtigt werden soll. Nun klickt man in eine andere Zeile, was die Neuberechnung auslöst. Mit Löschen des Minuszeichens kann die Linie wieder aktiviert werden.

Man kann nun solange Linien aktivieren und deaktivieren, bis eine befriedigende Genauigkeit entweder im Zielbereich H α oder über den gesamten Bereich erreicht ist.

Allerdings sollte man immer das Ziel der Maßnahme im Auge behalten. Wenn man sich auf einen Bereich konzentriert, sollte man in dessen Nähe mehr Referenzlinien wählen.

P	🚰 Calibration Reference Points 🛛 🗙							
Element filter		filter	Neon 💌 [Default] 💌					
Enter or select wavelength (Å) for point #8			Neon Ne I - 671	7.043	Suggest			
	Bary	centre	Add Another P	Cancel				
	Num	Pixel	Wavelength	Error	D			
	1	1843.12	6334.428	-0.0018310546875	Ô			
	2	1948.25	6382.992	0.0030517578125	T			
	3	-1990.01	6402.246	Ignore Neg pixel points	亩			
	4	2215.11	6506.528	-0.0018310546875	1			
	5	-2272.02	532.882	Ignore Neg pixel points	Ö			
	6	2414.31	6598.953	-0.001220703125	Û			
	7	2585.04	6678.276	0.0042724609375	Û			
	8	2668.45	6717.043	-0.00244140625				
Ca	Calibration fit 3 Cubic							
RMS error (Å)			0.00263702014095372					
Coefficients 550.113764368581, 0.0439254580613914, 8.8199								

Die Wellenlängenkalibrierung verbessert sich erheblich auf RMS=0.00264Å verbessert.

- ➔ Finish
- ➔ Speichern

8.3 Übertragung der Wellenlängenkalibrierung auf das Spektrum von zeta Tau

→	02: zeta tau 2018-02-1	7 anwählen	Profile Properties: 02 zeta Tau 2018-02-17
→	Profile properti	es 02: zeta tau 2018-02-17	General Line Y-Axis Calibration Response Calibration options (see also main menu) C No Calibration
→	Use Calibration from fi	rst profile	C Lise Calibration from first profile
→	Сору		
→	Ok	Copy Calibration X	Use Individual Calibration Coefficients [550.11376953125, 0.0439254567027092, 8.8]
→	Apply		C Use FITS Header values
→	Ok	Copy Calibration from First profile?	Coefficients 0, 0
	- 2		Lamda Offset (nm)
→	in jeweils	OK Abbrechen	
	speichern		Ok Apply Close

- ➔ Image Strip View umstellen auf Synth Color stretched (synthetisches Sternspektrum)
- ➔ I Speichern des Projekts unter dem selben Namen zeta tau 2018-02-17.bass
- → Show/Hide Calibration Points: Schaltet die Anzeige der Kalibrierpunkte ein und aus!

Ausblenden des Referenzspektrums #01

- ➔ Rechte Maustaste auf Spektrum #01:
- → Linke Maustaste auf Spektrum 02: zeta Tau mit der Maus aktivieren:
- → Falls gewünscht, Farbe ändern:

Profile Properties 02 zetam Pagina 2018-02-17 Concerning Concernin	Nudge 1 pixel left Nudge 1 pixel right Profile Properties
General Line (Y-Aus Calvaton Response Calvaton Response Calvaton Response Calvaton	Nudge 1 pixel right Profile Properties
Line display properties	Profile Properties
Line Width 1 px wide	Copy Active Binned Region from 🔹 🕨
Line Marker [no marker]	
Line Style Solid	
Fil Style No Fil Transparent	
Ck Apply Cose	
zeta Tau 2018-02-17	
DAD0\$ 1200 L/mm	
60000	
50000	
and him many many and a second	BAD
· · · · · ·	Trobers
₫ 30000	0.0 B ees 0
	4-4-4-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6
20000	
10000	Manumenter and the second seco
0 5600 5700 5800 5900 6000 6100 6200 6500 6400 6500 6600	6700 6800 6900 7000

Schülerlabor Astronomie des Carl-Fuhlrott-Gymnasiums, Jung-Stilling-Weg 45, 42349 Wuppertal <u>www.schuelerlabor-astronomie.de |</u> Kontakt: Dipl.-Phys. Bernd Koch | <u>Bernd.Koch@astrofoto.de</u>

Image #01

Save In

Save as

ae As.

Hide Profile from Chart

rofile..

9. Normierung der relativen Intensität des Spektrums

Der Intensitätsverlauf des wellenlängenkalibrierten Spektrums stellt nicht den wahren Kontinuumsverlauf dar. Dieser wird durch verschiedene Faktoren verfälscht. Dazu zählt die Instrumentenfunktion ("Response") von Teleskop, Spektrograf und Kamera, sowie Absorption und Streuung an interstellarem Staub und Molekülen in der Erdatmosphäre. Zusammengefasst spricht man von einem Pseudokontinuum.

Auf zwei verschiedene Arten können diese Einflüsse beseitigt werden: Normierung auf "1" oder Flusskalibrierung.

9.1 Pseudokontinuum entfernen

Unter der *Normierung eines Spektrums* versteht man die Eliminierung des pseudokontinuierlichen Anteils im Spektrum (Continuum Removal), so dass nur noch die Spektrallinien im Spektrum verbleiben.

<u>Subtraktion</u> des Kontinuums: Hat den Nachteil, dass bei einer Subtraktion die relativen Intensitäten der Spektrallinien zueinander nicht stimmen. Wird in der Regel nicht angewendet.

Division durch das Kontinuum: Die relativen Intensitäten bleiben erhalten, das Divisionsergebnis ergibt im Spektrum im Idealfall einen exakt horizontalen Verlauf, dessen Intensität den Wert "1" aufweist. Deshalb spricht man auch von der Normierung auf "1". Dies wird im Folgenden beschrieben.

1. Durchführung einer Normierung des gesamten Spektrums

- → Spektrum 02: zeta Tau an Position 1 bringen
- → Hide Profile from chart 01: Neon-Referenz
- → Spektrum 01: zeta Tau aktivieren
- Continuum and Response Shaper anwenden auf 01:zeta Tau
- ➔ Free Draw wählen
- → Kästchen setzen per Doppelklick entlang des Kontinuums.
- ➔ Refresh aktualisiert das Bild. Kästchen löschen mit mittlerer Maustaste. Spektrallinien großzügig überbrücken, ohne die Flügel der Linien zu kappen. Die so definierte orangene Kurve ist das sogenannte Pseudokontinuum, meist auch als Response bezeichnet.

→ Save as Continuum Removal for: 02 zeta Tau

→ Normierung direkt anwenden: Abfrage mit Ok beantworten

Ergebnis: Das (vorläufig) normierte Spektrum.

→ Falls das durchschnittliche Kontinuum in Bereichen NICHT auf einer horizontalen Linie liegt, kann das Pseudokontinuum nochmals editiert werden.

→	Response → Edit	Profile Properties: 01 zeta Tau 20 General Line Y-Axis Calibra Response correction optio O No Response Correction O Response File O Instrument Response O Continuum Removal 550.4 O Master ResponseCurves.dat Name	18-02: tion ons 1552,4	-17 Response
 → Target → Free Dr → Neue K werder → Save 	Profile <i>: 01 zeta Tau</i> aw ästchen können geset: n. Löschen durch Drücl	zt und/oder alte entferr ken auf das Mausrad!	nt	Continuum & Response Shaper Double click points on the chart to create a response curve Target 01 zeta Tau 2018-02-17 reprofile Free Draw Linearise Save Refresh Clear Close Points 550.4552,47703.73 551.8176,45912.14 55 Plot complete

→ Ok

➔ Projekt zwischendurch immer mal speichern: C:\astrobodger\zeta Tau 2018-02-17\zeta Tau 2018-02-17.bass

Ansicht Vorher/Nachher: Wie sieht das Profil mit bzw. ohne Kontinuumsentfernung aus?

→ Profile Properties	Profile Properties: 01 zeta Tau 2018-02-17
→ Response	General Line Y-Axis Calibration Response
 → Continuum Removal ↔ No Response Correction → Jeweils Apply 	Response correction options No Response Correction Response File Instrument Response Continuum Removal 550.4552,47703.73 551.8176,4
	 Master ResponseCurves.dat file Name ✓ Edit Ok Apply Close

9.2 Normierung auf "1"

"Normierung auf 1" bedeutet, dass das Kontinuum auf den Wert 1 festgelegt wird.

Zunächst sicherstellen, dass das Spektrum von zeta Tau an Position 1 steht: 01: zeta Tau 2018-02-17

- → Falls nicht, mit rechter Maustaste in das zeta-Tau-Spektrum klicken
- ➔ Sequence
- ➔ #01 auswählen

Falls links und rechts unerwünschte Bereiche sind, diese nun ausgrenzen. Ein vollständiges Entfernen aus dem Datensatz ist in dieser späten Phase aber nicht mehr möglich:

→ Mit der linken Maustaste das Spektrum wie gewünscht eingrenzen

- → Crop X-Axis Range
- → Wellenlängenbereich eingrenzen mit der Maus.
- ➔ Apply
 - File 🗲 Save Project File

Normierung auf "1" durchführen:

- → Image
- ➔ Normalize Flux Scale
- → Im Spektrum einen Bereich definieren, der den Wert 1 erreichen soll. Hier bei ca. 6000Å-6100Å
- → Falls unzufrieden mit der Lage der "1"-Linie, neue Start- oder Endwerte eingeben und Apply drücken.
- → Falls zufrieden: Close

9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität)

Die manuelle Skalierung der Y-Achse (Flux) des Spektrums von zeta Tau beträgt in diesem Beispiel 0 bis 2:

Skalierung der Y-Achse	Profile Properties: 01 zeta Tau 2018-02-17
- and the	General Line Y-Axis Calibration Response
→ Profile Properties	Y-Axis options Apply to all
	Data Offset 0 Data Multiplier 2.058936E-
→ Save Property Settings	C Automatic scaling Scaling % 100
→ Apply	Offset %0
→ Ok	Manual Scaling Min Value 0.5 Max Value 2
	C Scale as first profile
	Close

Ergebnis: Das auf "1" normierte Sonnenspektrum, in der Intensität von 0 bis 2 skaliert. Das Referenzspektrum bleibt ausgeblendet.

10. Beschriftung des normierten Spektrums

Speichern des Projekts mit allen Skalierungen und Beschriftungen: *zeta Tau 2018-02-17.bass*

11. Notizen erstellen und einblenden

12. Speichern eines 1D-Profils (Wellenlänge, Intensität) im FITS-Format

→ Speichern des Spektralprofils (_1D), um es bsp. in VisualSpec oder MIDAS zu verarbeiten:							
2eta 100 0x1203-1D.jit	Export Profile to DAT	or FIT file	×				
	← → × ↑ <mark>.</mark> «	astro > zeta Tau 2018-02-17 🗸 🗸	"zeta Tau 2018-02-17" durchs 🔎				
🚰 Save as 1D profile ? 🗙	Organisieren 👻 🛛 No	euer Ordner	III 🗸 🥐				
Source File Idger\zeta Tau 2018-02-17\zeta Tau 8x120s.fit	📌 Schnellzugriff	Name	Änderungsda [,] ^ 28.02.2018 11:				
Source Range (Å) 5501.14 7034.45	Daten	🖈 🚺 zeta Tau 8x120s.fit	04.03.2018 18:				
Source Calibration Cubic. Degree=3	Shared	💉 🚺 zeta Tau 8x120s-1D.fit	04.03.2018 18: 🗸				
		_ v <	>				
Target filename C:\astrobodger\zeta Tau 2018-02-17\ze	Dateiname ze	eta Tau 8x120s-1D.fit	~				
Interval (Å/pixel) 0.4388428 Edit Interval	Dateityp: Fl	T Profiles (*.fit)	~				
Image: Linear Interpolation Show saved profile Save	 Ordner ausblenden 		Speichern Abbrechen				

13. Datenerfassung im 1D-Profil für die BeSS-Datenbank

13.1 Zeta Tau in der BeSS-Datenbank

Zeta Tau ist ein klassischer Be-Stern, dessen Spektren mit anderen in der BeSS-Datenbank verglichen oder zugeführt werden können⁵. Gibt man im Abfrage-Fenster zeta Tau ein, werden Anfang März 2018 insgesamt 2548 Spektren angeboten:

Warning: when a parameter (e.g. vsini) is used in a query, only stars for which this parameter is defined in BeSS are returned.

Be stars Abfrage

z. Zt. vorhanden 2330 Be Sternen im BeSS-Katalog

Be Sterr Rektaszension (α) J2000 Deklination (δ) J2000 Stellar type	zeta Tau 05 h 37 21 d 08 All Be stars	7 m 38.69 s 3 ' 33.16 "	nur dieser Stern um diesen Stern
V magnitude Spektral typ	zwischen zwischen	und und	
V sini	zwischen	und	Mehr Kriterien
Absenden Löschen			

Spektren, die im Vergleichszeitraum mit höherer spektraler Auflösung (LHIRES III) aufgenommen wurden:

⁵ http://basebe.obspm.fr/basebe/

13.2 Öffnen des 1D-Profils

	🤁 Open Image Files	;					×	<
→ 🚰	$\leftarrow \rightarrow \land \uparrow$	« astro » zet	a Tau 2018-02-17	~ Ō	"zeta Tau 2018	3-02-17" dur	chs 🔎	
	Organisieren 🔻	Neuer Ordner						
	 Schnellzugriff Daten Shared astrobodger 	*	Name Sicherung Neon.fit zeta Tau 8x120s.fi zeta Tau 8x120s-1	t D.fit		Änderungs 04.03.2018 28.02.2018 04.03.2018 04.03.2018	sdatum 17:06 11:25 18:27 18:42	<
		Dateiname: zet	a Tau 8x120s-1D.fit	~	FITS files (*.fi	t;*.fts;*.fits;*	,tfits) ∨ orechen	

13.3 BeSS-Settings

Ima	ge	Calibration	Operation	Tools	Help		
	Image Profile 01: zeta Tau 2018-02-17						
2	Profile Properties				F4		
HTS	FIT	S Header	Strg	+Umscha	alttaste+H		
	BeS	S Settings	Strg	+Umsch	alttaste+B		

PBESS Settings 01: 2	zeta Tau 2018-02-17	×
1 Aquisition Reference	Data 2 Object 3 Aquisition Details 4 Processing Comments Errors	
Observer	Bernd Koch	
Observation Site -		
O Site Name	Soerth/Germany	
 Site Location 	Latitude (-90 to +90) Longitude (0 to 360) Altitude 50.6988906860352 7.6811113357543! 260	
Equipment Configu	Iration	
C Equipment		
New config	Telescope Spectrograph Camera 0.35m Schmidt Cassegrain DADOS 1200 l/mm ST-8300 CCD Camera	
	Reload Validate BeSS Save FITs heade	er

🥦 BESS Settings 01: zeta 1	au 2018-02-17		×
1 Aquisition Reference Data	2 Object 3 Aquisition Detail	s 4 Processing Comments Errors	
Object			7
Object name	zeta Tau	Simbad <u>View Simbad</u>	
C Specify Object Loca	ation		
RA (degrees)	84.41118925	RA	
DEC (degrees)	21.1425441108023	DEC	
Equinox 200	0		
FK5 Coordin	ates		
Spectral type	B1IVe_shell		
Proj. rotational. velocity	245		
Visual Magnitude	3.03		
Radial Velocity (Simbad) 20		
🞰 🐼 🧔	Reload	Validate BeSS Save FITs he	ader

P BESS Settings 01: zeta Tau 2018-02-17	×
1 Aquisition Reference Data 2 Object 3 Aquisition Details	4 Processing Comments Errors
Calibration	
Ref wavelength 6562.85	Instrument RP
Dispersion 0.457569204253058	6786 (Messung später)
Ref pixel 1 Read from	Effective SRP
Unit Angstrom - Profile	285 (?)
Date + time	Resolution calculation wavelength
Start date + time 2018-02-17 21:47:19	, Binning reason
End date + time 2018-02-17 22:04:31 .	
Duration (s) 1032 Zone Shift	
Reload	Validate BeSS Save FITs header

PBESS Settings 01: zeta Tau 8x120s-1D.fit	×
1 Aquisition Reference Data 2 Object 3 Aquisit	ion Details 4 Processing Comments Errors
Processing	
Applied Heliocentric Correction (km/s)	
Heliocentric Correction to be applied (km/s)	Calculate
Atmospheric line correction	none
Cosmic ray removal	removed, no indication of method
Normalisation (continuum removal) applied	Applied (BASS Project software)
	Reload Validate Bess Save Fills header
R Doppler Shift	X
	,
Calculate Doppler Shift Apply Doppler Shift	ft Doppler Conversion Utility
Calculate Barycentric Velocity con	rrection due to Earth's orbit around the
Sun and the rotation of the Earth.	
Target	Site
Object name zeta Tau Sim	bad Latitude 50.6988906860
RA (d.dd) 84.41118925 R/	A Longitude 7.68111133575
DEC (d.dd) 21.1425441108 DE	C Elevation 260
Observation date (exposure mid point)	
Date & Time 2018-02-17 21:55:55	▼ Zone Shift
Barycentric Correction (km/s)	115007{ + is toward star (blue shift)
Calc	ulate Update FITS Header Close

👫 Doppler Shift							×
Calculate Doppler Shift	Apply Doppler	r Shift	Doppler Co	onversion	Utility		
Create a new profit the rotation of the f	ile that is cor Earth	rected	d for Earth	n's orbit	around	d the Sun and	
Doppler shift of targ	get (km/s)	27.125	1150078		+ is tov	ward star	
Interval (Å/pixel)	Ī	0.43884	428		🗆 Ed	lit Interval	
🗆 Linear Interpola	ation						
				Create P	rofile	Close	
PBESS Settings 02: zeta 1	tau 8x120s-1d_V	C-27.12	511				×
1 Aquisition Reference Data	a 2 Object 3 Ad	quisition	Details 4 Pr	ocessing	Comment	ts Errors	
Processing		-					
Applied Heliocentric Co	rrection (km/s)	-2	27.12511				
Heliocentric Correction	to be applied (km/	/s) -2	27.12511		Cal	culate	
Atmospheric line correc	tion	n	one			•	
Cosmic ray removal		re	moved, no in	dication of	method	▼	
Normalization (continuu							
Normalisation (continue	m removal) applied	d JA	pplied (BASS	Project sof	tware)	-	
Normalisation (continue	m removal) applied	d JA	pplied (BASS	Project sof	tware)	<u> </u>	
Normalisation (continue	m removal) applied	d JA	pplied (BASS	Project sof	tware)	•	
	m removal) applied	d JA	pplied (BASS	Project sof	tware)	T	

Dieses heliozentrisch korrigierte 1D-Profil kann nun mit Validate BeSS geprüft werden

Export des RV-unkorrigierten 1D-Spektrums

🛃 Export Profile to DAT or FIT file		×
\leftarrow \rightarrow \checkmark \uparrow \blacksquare « astrobodger	> zeta Tau 2018-02-17 v ひ	"zeta Tau 2018-02-17" durchs 🔎
Organisieren 🔻 🛛 Neuer Ordner		III 👻 ?
👌 Musik	^ Name	Änderungsdatum Typ 🖌
📑 Videos	Sicherung	04.03.2018 17:06 Datei
WDMyCloudEX4100	Neon.fit	28.02.2018 11:25 Maxlr
🏪 Lokaler Datenträger (C:)	▲ 7ata Tau 8v120c fit	04 03 2018 18-27 Mayl,
Dateiname: C:\astrobodge	∖zeta Tau 2018-02-17\zeta Tau 8x120s-1D.fit	~
Dateityp: FIT Profiles (*.fi	.)	~
∧ Ordner ausblenden		Speichern Abbrechen

Export des RV-korrigierten 1D-Spektrums

🎦 Export Profile to D	AT or FIT file	×
← → ~ ↑ 📘	« astrobodger » zeta Tau 2018-02-17	✓ ³ "zeta Tau 2018-02-17" durchs
Organisieren 🔻	Neuer Ordner	≣== ▼ (?)
, Daten	🖈 🛕 Name	Änderungsdatum Typ ^
Shared	🖌 🔚 Sicherung	04.03.2018 17:06 Datei
astrobodger	🚽 🕕 Neon.fit	28.02.2018 11:25 Maxir
Deckton	🔵 💿 zeta Tau 8x120s.fit	04.03.2018 18:27 Maxlr 🗸
Desktop	~ v <	>
Dateiname:	zeta tau 2018-02-17_VC-27.12511.fit	~
Dateityp:	FIT Profiles (*.fit)	~
∧ Ordner ausblende	n	Speichern Abbrechen

13.4 Der FITS-Header

Hier der von BASS bisher geschriebene FITS-Header:

→ Image → FITS Header ...

Ima	ige	Calibration	Operation	Tools	Help	
	Ima	ige Profile 01: o	α Aur (Capella)		
2	Pro	file Properties.			F4	
HTS	FITS	S Header	Strg	+Umscha	alttaste+H	
	BeS	S Settings	Strg	+Umsch	alttaste+B	

```
FITS Header Keyword Viewer 02: zeta tau 8x120s-1d VC-27.12511
SIMPLE
                              T / file does conform to FITS standard
                            -32 /8 unsigned int, 16 & 32 int, -32 & -64 real
BITPIX
NAXIS
                              1 / number of data axes
NAXIS1 =
                           3494 /fastest changing axis
BSCALE =
                            1.0
                   0.000000000 /physical = BZERO + BSCALE*array_value
BZERO
DATE-OBS= '2018-02-17T21:47:19'
EXPTIME =
                           1032
EXPOSURE=
            840.0000000000000 /Exposure time in seconds
SET-TEMP= -20.000000000000000000 /CCD temperature setpoint in C
CCD-TEMP=
                        -20.418
XPIXSZ = 5.400000000000004 /Pixel Width in microns (after binning)
YPIXSZ = 5.40000000000004 /Pixel Height in microns (after binning)
XBINNING=
                              1 /Binning factor in width
YBINNING=
                              1 /Binning factor in height
XORGSUBF=
                              0 /Subframe X position in binned pixels
YORGSUBF=
                              0 /Subframe Y position in binned pixels
                   1 /
READOUTM= 'Raw
                                 Readout mode of image
IMAGETYP= 'Light Frame' /
                                  Type of image
APTDIA = 356.00000000000000 /Aperture diameter of telescope in mm
APTAREA = 99538.224406242371 /Aperture area of the
EGAIN = 0.35999998450279236 /Electronic gain in e-/ADU
SBSTDVER= 'SBFITSEXT Version 1.0' /Version of SBFITSEXT standard in effect
SWCREATE= 'BASS Project 0.1.9.8'
SWSERIAL= '2WM9K-N52N9-47H74-R8UVE-5SVUU-9A' /Software serial number
SITELAT = '51 40 00' /
SITELONG= '07 40 00' /
                                 Latitude of the imaging location
                                  Longitude of the imaging location
JD = 2458167.40935
OBJECT = 'zeta Tau 120s'
            2458167.4093518518 /Julian Date at start of exposure
TELESCOP= '0.35m Schmidt Cassegrain f/8'
INSTRUME= 'DADOS 1200 1/mm'
OBSERVER= 'Bernd Koch'
FLIPSTAT= 'Flip/Mirror'
SWOWNER = 'Bernd Koch' /
                                  Licensed owner of software
INPUTFMT= 'FITS
                    1 /
                                 Format of file from which image was read
SWMODIFY= 'BASS Project 0.1.9.8'
HISTORY Dark Subtraction (Dark 18, 3352 x 2532, Binl x 1, Temp -20C,
HISTORY Exp Time 120s)
CALSTAT = 'D
PEDESTAL=
                            -100 /Correction to add for zero-based ADU
SNAPSHOT=
                              7 /Number of images combined
MIDPOINT= '2018-02-17T21:56:59' /UT of midpoint of exposure
CBLACK = -0.001889618 /Initial display black level in ADUs
CWHITE =
                        1.93577 /Initial display white level in ADUs
CUNIT1 = ''Angstrom''
CDELT1 = 0.438842810690403
CRVAL1 =
              5501.14013671875
CRPIX1 =
CTYPE1 = 'wavelength'
BSS_SITE= 'Soerth/Germany'
           50.6988906860352
BSS_LAT =
BSS LONG=
              7.68111133575439
BSS ELEV=
                            260
DATE-END= '2018-02-17T22:04:31'
BAS_MJD =
             2458167.41383102 / BASS Project mid-exposure Julian Date
DETNAM = 'SBIG ST-8300 CCD Camera'
OBJNAME = 'zeta Tau'
       =
                    84.41118925
RA
        =
DEC
              21.1425441108023
EQUINOX = 2000
BSS_STYP= 'BlIVe_shell'
BSS_VSIN=
                            245
BSS_VMAG=
                           3.03
BSS_COSM= 'removed, no indication of method'
BSS_NORM= 'Applied (BASS Project software)'
BSS_TELL= 'none'
BSS RQVH= 27.12511
BSS VHEL= 27.12511
                                  Find Text
                                                                                Close
Enable Edit
                Row: 70
                                                                      Find
```

14. Erfassung der Messgrößen EW, V, R, CA, HRV-CA

Im von Ernst Pollmann⁶ moderierten Langzeit Monitoring des Sterns zeta Tau sind folgende Messgrößen bei der H α -Linie zu ermitteln:

- Hα-Äquivalentbreite EW: 6520Å-6600Å
- Intensität des Hα V-Peaks
- \succ Intensität des H α R-Peaks
- → V/R-Verhältnis der H α -Linie
- > Tiefe der zentralen Absorption (CA) der H α -Linie
- > Heliozentrische Radialgeschwindigkeit HRV des Hα-Absorptionsminimums (HRV-CA)

⁶ http://www.astrospectroscopy.de/projects.html

Messung der HRV der Zentralen Absorption (HRV-CA)nach Umstellung der Wellenlängenskala auf eine Geschwindigkeitsskala, bezogen auf H α =6562.85Å:

Die heliozentrische Radialgeschwindigkeit der zentralen Absorptionseinsenkung beträgt HRV=+33.19 km/s

Bestimmung der spektralen Auflösung anhand der Linien des Neon-Referenzspektrums:

Mittelwert 6532Å bis 6717Å: R=6786 \pm 400. FWHM = 0.97Å \pm 0.01Å (Apparatebreite)

	Measurements	and Elemen	ts		×
	Element Lines Meas	urement Optic	ms Measurement Results	Python	
~~~~	Profile Date Julian Date Max Flux Min Flux Flux Range Average Flux Std Deviation SNR Profile Area Line Area Continuum Area Equiv Width FWHM Barycentre	: 02 Neon : 17/02/2 : 2458167 : 12134.6 : 143.803 : 11990.8 : 1568.08 : 2734.75 : 0.57339 : 1663.32 : -1486.6 : 176.695 : -84.628 : 0.88195 : 6533.30	-Referenz 018 21:41:06 (17.90 .40359954 40625 at 6532.91503 329468 at 6530.3527 372955 686232 (RMS 3152.42 05923 2987251 763672 3256836 (-841.35485 083618 4675598 Å 8007812Å (R = 7407 175781Å (2272.84570	35 /02/2018) 906Å (2272.01147461 px) 832Å (2266.48608398 px) 089844) 8398 %) @6532.91503906Å) 1.90185546 312 px)	8
	L'	:			
	6550			6600 Wavelength (Å)	

## 15. Das Langzeitmonitoring⁷ des Sterns zeta Tau bis 17.2.2018 (JD 58167)



#### 1. Äquivalentbreite EW der H $\alpha$ -Linie

2. Intensitätsverhältnis V/R der der H $\alpha$ -Linie



⁷ Ernst Pollmanns Auswertung des eingesandten normierten Spektrums

#### 3. Intensitätsverhältnis der zentralen Absorption (CA) der H $\alpha$ -Linie



## 16. Übertragung des Projekts an einem anderen Ort ("Bundles")

BASS arbeitet projektbezogen. Das bedeutet, dass alle für das Projekt benötigten oder erstellten Dateien <mark>einen festen Pfad besitzen</mark> und in einem festen Ordner, hier C:/astrobodger/ ... vorhanden sein müssen. Deshalb findet diese Kalibrierung von zeta Tau gemäß Tutorial ausschließlich im Ordner c:/astrobodger/zeta Tau 2018-02-17 statt.

Frage: Wie überträgt man die ursprüngliche Kalibrierung *.bass* von *C:/astrobodger/* ... auf eine andere Festplatte und/oder in einen anderen Ordner, um sie von dort aus aufrufen zu können?

Antwort: Man öffnet wie gewohnt in *c:/astrobodger zeta Tau 2018-02-17* die BASS-Datei (Beispiel: *zeta Tau 2018-02-17.bass* und speichert das Projekt im neuen Ordner wie folgt als "Bundle" ab:

#### Speichern als Bundle am neuen Ort:

- ➔ File
- → Save Project or Bundle
- → D:/neuer Ordner/zeta Tau 2018-02-17.bass

P Save BASS Project	t file or bundle		×
← → • ↑ <mark> </mark>	≪ Lokaler Datenträger (D:) → Neuer Ordner → Ō	"Neuer Ordner" durchsuchen	Q
Organisieren 🔻	Neuer Ordner		?
📥 Schnellzugriff	∧ Name	Änderungsdatum Typ	Ý
Daten	🖉 zeta Tau 2018-02-17.bun	07.03.2018 15:14 BUN-Dat	tei
Shared	* ~ <		>
Dateiname	zeta Tau 2018-02-17.bun		~
Dateityp	BASS Bundle (*.bun)		$\sim$
<ul> <li>Ordner ausblende</li> </ul>	en	Speichern Abbrechen	

#### Entpacken des Bundles am neuen Ort

- ➔ File
- ➔ Open Project or Bundle
- → D:/neuer Ordner/zeta Tau 2018-02-17.bass
- → Dort öffnet man die .bass-Datei des Projekts und arbeitet wie gewohnt weiter.

P Open BASS project file or bundle							
← → × ↑ 🔤 « Lokaler	Dater	träger (D:) > Neuer Ordner	~ Ū	"Neuer Ordner" du	rchsuchen	9	
Organisieren 👻 🛛 Neuer Ord	ner				•	?	
👌 Musik	^	Name		Änderungsdatum	Тур		
🚆 Videos		🥮 zeta Tau 2018-02-17.bun		07.03.2018 15:14	BUN-Datei		
WDMyCloudEX4100							
🏪 Lokaler Datenträger (C:)							
📥 Lokaler Datenträger (D:)	~ <					>	
Dateiname	zeta	a Tau 2018-02-17.bun	~	BASS Bundle (*.bu	n) Abbreche	~ n	

### 17. Kurse zur Sternspektroskopie am CFG Wuppertal

Das Tutorials zur Kalibrierung eines Sonne-, bzw. Sternspektrums werden in den Kursen des Autors (rechts im Bild) am Carl-Fuhlrott-Gymnasium in Wuppertal zur Sternspektroskopie eingesetzt. Im Rahmen des Kurses wird u.a. das Tageslichtspektrum mit insgesamt sieben zur Verfügung stehenden DADOS-Spektrografen und vielen STF-8300M **CCD-Kameras** ebenso aufgenommen und für die Kalibrierung mit BASS vorbereitet.

Die seit 2011 verwendete Software VisualSpec wird nur noch hin- und wieder herangezogen.

Aktuelle Kursinformationen finden Sie unter:









