Be-Stern ζ (zeta) Tau im Bereich Hα
Kalibrierung eines 1200L/mm DADOS-Spektrums mit einer Neon-Referenzlampe

Wellenlängenkalibrierung – Normierung
Äquivalentbreite EW - V/R-Verhältnis – Tiefe der zentralen Absorption CA – Heliozentrische Radialgeschwindigkeit HRV

Tutorial 1.1
Dipl.-Phys. Bernd Koch

Schülerlabor Astronomie des Carl-Fuhlrott-Gymnasiums, Jung-Stilling-Weg 45, 42349 Wuppertal

Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

Inhalt

1. Der spektroskopische Be-Doppelstern ζ Tau .. 2
 1.2 Festlegung der Messgrößen .. 5
2. Die Kalibrierung... 6
3. ζ Tau Summenspektrum und Neon-Referenzspektrum ... 8
4. BASS starten .. 9
4.1. Spektren in BASS öffnen .. 10
4.2 Voreinstellungen vornehmen .. 11
5. Sternspektrum und Referenzspektrum horizontal ausrichten 13
6. Auswahl des Scanbereichs für Spektrum und Himmelshintergrund 15
7. Einzelne Spektralbereiche genauer betrachten .. 19
8. Wellenlängenkalibrierung ... 20
 8.1 Das Neon-Referenzspektrum .. 20
 8.2 Wellenlängenkalibrierung des Spektrums des Referenzspektrums 21
 8.3 Übertragung der Wellenlängenkalibrierung auf das Spektrum von ζeta Tau 28
9. Normierung der relativen Intensität des Spektrums ... 29
 9.1 Pseudokontinuum entfernen .. 29
 9.2 Normierung auf „1“ .. 33
 9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität) 34
10. Beschriftung des normierten Spektrums ... 35
11. Notizen erstellen und einblenden .. 36
12. Speichern eines 1D-Profils (Wellenlänge, Intensität) im FITS-Format 36
13. Datenerfassung im 1D-Profil für die BeSS-Datenbank .. 37
 13.1 Zeta Tau in der BeSS-Datenbank .. 37
 13.2 Öffnen des 1D-Profils .. 38
 13.3 BeSS-Settings ... 38
 13.4 Der FITS-Header... 43
14. Erfassung der Messgrößen EW, V, R, CA, HRV-CA ... 44
15. Das Langzeitmonitoring des Sterne zeta Tau bis 17.2.2018 (JD 58167) 47
16. Übertragung des Projekts an einem anderen Ort („Bundles“) 49
17. Kurse zur Sternspektroskopie am CFG Wuppertal ... 50

Der Gruppe beitreten und Software downloaden: https://groups.io/g/BassSpectro
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich $\text{H} \alpha$

1. Der spektroskopische Be-Doppelstern ζ Tau

ζ Tau ist ein interessanter spektroskopischer Doppelstern in rund 400 Lj. Entfernung. Seine hohe scheinbare Helligkeit von 3 mag. prädestiniert ihn für die Spektroskopie auch mit kleineren Teleskopen. Sinnvolle spektroskopische Auswertungen erfordern jedoch ein spektrales Auflösungsvermögen von $R > 4000$, welches unter anderem der DADOS mit den Gittern 900 L/mm und 1200 L/mm ermöglicht.

Die Literaturdaten zum Stern sind uneinheitlich. Der Spektraltyp des ca. 15500K heißen Sterns wird unterschiedlich angegeben: B1 IVe shell (SIMBAD), B2 IVe, B2 IIpe. Sicher ist, dass er von einer leuchtenden Wasserstoffscheibe umgeben ist.

Die Rotationsgeschwindigkeit des einzig in Erscheinung tretenden Hauptsterns beträgt 320-330 km/s.1 Die Fliehkraft aufgrund der hohen Rotationsgeschwindigkeit sind die Ursache der etwa 100 Sonnendurchmesser großen äquatorialen Gasscheibe um den Hauptstern. Sie leuchtet in Form eines sich periodisch verändernden Doppelpeakprofils, welches durch eine V- und eine R-Komponente geprägt ist.

1 Quelle: Ernst Pollmann
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

BeSS-Datenbank, http://basebe.obspm.fr/basebe/

<table>
<thead>
<tr>
<th>Be Stern</th>
<th>ζ Tau</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD Nummer</td>
<td>37202</td>
</tr>
<tr>
<td>Koordinaten</td>
<td>05 37 38.69 +21 08 33.16 (2000)</td>
</tr>
<tr>
<td>V magnitude</td>
<td>3.03</td>
</tr>
<tr>
<td>Spektraltyp</td>
<td>B2IVe</td>
</tr>
<tr>
<td>Teff</td>
<td>21500 K</td>
</tr>
<tr>
<td>logg</td>
<td>4.22</td>
</tr>
<tr>
<td>vsini</td>
<td>245 ±33 km/s</td>
</tr>
<tr>
<td>Inclinationswinkel</td>
<td>79 degrés</td>
</tr>
<tr>
<td>Entfernung</td>
<td>136 [123-154] pc</td>
</tr>
<tr>
<td>Radialgeschwindigkeit</td>
<td>20 ±5 km/s</td>
</tr>
</tbody>
</table>

Jaschek & Egret, 1982, IAUS 98, 261
Simbad database, CDS
Simbad database, CDS
Evans, 1967, IAUS 30, 57

Doch ganz so einfach ist das Modell nicht. Mit einer Periode von 1471 ±15 Tagen präzediert eine Wasserstoffschicht, die eine lokale Verdichtung aufweist. Eine weitere Zyklusperiode beträgt 69 Tage.

Schließlich ist eine weitere Periode von 442 +/-5 Tagen ist in der Lage der Zentralen Absorptionseinsenkung zu finden².

² Quelle: Ernst Pollmann, Unterlagen zum Herbstkurs Sternspektroskopie 2017 am CFG Wuppertal
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

1.2 Festlegung der Messgrößen

Im von Ernst Pollmann moderierten Langzeit Monitoring sind folgende Messgrößen bei der Hα-Linie zu ermitteln:

➢ Hα-Äquivalentbreite EW: 6520Å-6600Å
➢ Intensität des Hα V-Peaks
➢ Intensität des Hα R-Peaks
➢ V/R-Verhältnis der Hα-Linie
➢ Tiefe der zentralen Absorption CA
➢ Heliozentrische Radialgeschwindigkeit HRV des Hα-Absorptionsminimums (CA, Central Absorption)
2. Die Kalibriereinheit

Dann setzt man die Guidereinheit um 180° gedreht wieder ein, so dass das Licht der Kalibrierlampe in Richtung Spektrografeneingang umgelenkt wird. Zum Ein- und Ausblenden wird die Guiderhülse ganz einfach hinein- bzw. herausgeschoben.

Bemerkung:

Der Autor dankt Dr. Dieter Hess für den Hinweis auf die Eignung des TSFLIP für Kalibrierzwecke mit dem DADOS.

Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα
3. ζ Tau Summenspektrum und Neon-Referenzspektrum

Aufnahmedaten:

DADOS, Gitter 1200 L/mm, mittlerer Spalt: 25µm
SBIG ST-8300M (KAF-8300M) im 1x1-Binning, Pixelgröße 5.4µm, CCD-Temperatur: -20°C
Celestron 14 @f/8 auf 10Micron GM2000HPS
Aufnahmedatum: 17.2.2018, Mitte der Aufnahme: 21:56:59 UT (JD 2458167.414572), Belichtung: 8x120s

Die Aufnahmen wurden in dieser Reihenfolge (Aufnahmebeginn) gewonnen

21.42 UT: Neon Spektrum, 10s
21.47 UT: zeta Tau, 120s
21.49 UT: zeta Tau, 120s
21.51 UT: zeta Tau, 120s
21.53 UT: zeta Tau, 120s
21.56 UT: zeta Tau, 120s
21.58 UT: zeta Tau, 120s
22.00 UT: zeta Tau, 120s
22.02 UT: zeta Tau, 120s
22.04 UT: Neon Spektrum, 10s
22.10 UT: Dark, 120s
22.12 UT: Dark, 120s
22.14 UT: Dark, 120s
22.16 UT: Dark, 120s
22.18 UT: Dark, 120s

Vorbereitung der Rohdaten in MaxIm DL

Schritt 1: Master-Darkframe (Median) aus 5x120s Einzeldarks erzeugen.

Schritt 2: Beide Neonspektren mitteln (Average): Neon.fit

Schritt 3: Von jedem zeta-Tau-Spektrum wird das Masterdark subtrahiert.

Schritt 4: Stacking der korrigierten Einzelspektren von zeta Tau (Sum, IEEE Floating Point): zeta Tau 8x120s.fit

Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

4. BASS starten

Dieses Tutorial setzt voraus, dass das Objektspektrum zeta Tau 8x120s.fit und das Neon-Referenzspektrum Neon.fit im Ordner C:/astrobodger/zeta Tau 2018-02-17/.... im Format FIT vorliegen.

Start der aktuellen Version BASSProject.exe im Ordner C:/astrobodger

Das leere Arbeitsfenster eines neuen Projekts in der BASS 64-Bit-Version:

BASS arbeitet mit sogenannten „Projekten“, bei denen alle verwendeten 2D-Rohspektren, Ergebnisse und Beschriftungen gespeichert werden an einem festen Speicherort, C:/astrobodger. Projekte werden im Format .bass abgespeichert. BASS meldet sich, wenn Teile des Projekts (neue oder geänderte Spektralprofile) noch nicht gespeichert wurden und fordert dann dazu auf. Änderungen an vorhandenen oder neu erzeugte Spektralprofile werden im Format .fit (bzw. .dat) abgespeichert. Das FITS-Format ist umfangreicher als das DAT-Format, weil zusätzlich zu den Datenzeilen x,y auch alle wichtigen sonstigen Informationen gespeichert werden: Datum, Uhrzeit, Belichtungszeit, Aufnahmeort, etc.

4.1. Spektren in BASS öffnen

➔ Open Image Files
➔ Neon.fit und zeta Tau 8x120s.fit

Grün: unkalibriedetes zeta-Tau-Spektrum. Blau: Neon-Referenzspektrum

Erläuterung: Die x-Achse („Pixels uncalibrated“) entspricht der Pixelposition in horizontaler x-Richtung auf dem Foto. Dieser Pixelwert muss in einen Wert für die Wellenlänge λ (Lambda) umgerechnet werden. Die Ermittlung des funktionalen Zusammenhangs zwischen Pixelposition (x) und Wellenlänge (λ) in Form eines Polynoms höheren Grades $\lambda=f(x)$ bezeichnet man als *Wellenlängenkalibrierung*.

Die y-Achse („Flux“) gibt die Intensität an einer bestimmten Pixelposition im 1D-Spektralprofil an. Diese Intensitätskurve wird in diesem Tutorial kalibriert: Beseitigung des Pseudokontinuums (Normierung auf „1“).
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich $\text{H}\alpha$

⇒ Speichern des Projekts unter dem Namen C:/astrobodger/zeta Tau 2018-02-17/zeta Tau 2018-02-17.bass

⇒ Prüfen, ob Projekt korrekt gespeichert ist: New Projekt ➔ Open Project

Hinweis: Das Neon-Spektrum muss an Position 1 stehen. Falls dies nicht der Fall ist, jetzt Positionen tauschen:

⇒ #02 aktivieren ➔ Rechte Maustaste ➔ Sequence ➔ 01

4.2 Voreinstellungen vornehmen

⇒ Project Chart Settings: Hier alle Daten eingeben.
⇒ Main Title und Sub Title speichern
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

Chart width: CFG Medion-Notebooks ca. 1150 / Chart height: 450 (hängt von der Größe des Bildschirms ab)

⇒ Speichern des Projekts unter dem Namen C:/astrobodger/ζ Tau 2018-02-17/ζ Tau 2018-02-17.bass
5. Sternspektrum und Referenzspektrum horizontal ausrichten.

Zuerst werden die Captions (Namen) der Scans geändert

- **Neon.fit** umbenennen in **Neon-Referenz**
- **zeta tau 8x120s.fit** umbenennen zeta tau in **VV Cep**

Spektren horizontal ausrichten

- **Image Strip View**
- **Raw Image 50%**

- Spektrum #02 (zeta Tau) aktivieren

- **Image ➔ Rotate/Tilt correction**

- **Select Region, Tilt Image, Emission, Apply to all open images wählen.**
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

→ Dann mit der Maus um das Spektrum einen Rahmen aufziehen:

→ Apply → Close

Nun sind **beide** Spektren gleichermaßen um einen Winkel von 0.63° horizontal ausgerichtet.

Eine Smile/Slant-Korrektur muss hier nicht vorgenommen werden, da im genutzten Spektralbereich des Sternspektrums die Linien gerade sind und senkrecht auf dem Spektrum stehen.

→ Abspeichern der beiden gedrehten Spektren: Save the selected image strip (selbe Namen)

→ Speichern des Projekts: Unter dem selben Namen
6. Auswahl des Scanbereichs für Spektrum und Himmelshintergrund

➔ Sternspektrum #02 auswählen
➔ Image Strip View: 100%
➔ Selection ➔ Region Selection Tool

Es erscheint das Menüfenster Region Selection Tool.

➔ Active Binned Region (Sternspektrum definieren)
➔ Ziehe nun einen Rahmen innerhalb des Spektrums auf
➔ Update

➔ Verändere die Werte für Y Start und Y End, bis der Rahmen das Spektrum in nahezu voller Höhe umfasst. Die Breite wird automatisch angepasst.

➔ Update ➔ Bildschirm-Refresh ➔ Close

Hinweis: Unklar ist, inwieweit die Statistik der aktiven Binning-Zone hinsichtlich der Erzielung eines optimalen SNR innerhalb des Scanbereichs verwendet werden kann.
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

Nun werden die beiden Regionen für den Himmelshintergrund oben/unten definiert:

Manuelle Festlegung der beiden Himmelshintergrundbereiche oben/unten:

➔ Substraction Region 1 (für Himmel „oben“, also oberhalb des Sternspektrums)
➔ Rahmen aufziehen für Himmel „oben“

➔ Update. Der Rahmen wird automatisch über die ganze Breite aufgezogen.

➔ Substraction Region 2 (Himmel „unten“, also unterhalb des Sternspektrums)
➔ Rahmen aufziehen für Himmel „unten“
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich $\text{H}\alpha$

Und das ist das Ergebnis der Festlegung der Bereiche:

➔ Update ➔ Close

➔ Bildschirm-Refresh nicht vergessen!!

Nun wird NUR die „Active Binning Zone“, also der Bereich des Sternspektrums VV Ceps, der gescannt wird, auf das Referenzspektrum übertragen:

➔ Mit linker Maustaste in das Spektrum 01: Neon-Referenz aktivieren
➔ Mit rechter Maustaste in das Spektrum 01: Neon-Referenz klicken
➔ Copy Active Binned Region from
➔ 02: zeta Tau 2018-02-17

Ergebnis: Es sind alle benötigten Bereiche in beiden Spektren definitiert:
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich $\text{H}\alpha$

Das grüne Spektrum von zeta Tau ist das Resultat folgender Operation:

\[
\text{Intensität des Spektrums von zeta Tau} = \text{Intensität der Active Binning-Zone} - \frac{\text{Intensität (Himmel oben + Himmel unten)}}{2}
\]
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich $\text{H} \alpha$

7. Einzelne Spektralbereiche genauer betrachten

- Beispiel: $\text{H} \alpha$-Linie
- Ziehe mit der linken Maustaste einen Bereich von ca. 2100px bis 2800px auf

- **Crop X-Axis Range**

- **Apply**

- Zurück zur Gesamtansicht

- **Crop X-Axis Range**

- Turn off cropping ➔ Apply ➔ Ok

- Projekt speichern
8. Wellenlängenkalibrierung

8.1 Das Neon-Referenzspektrum

Die Wellenlängendatei befindet sich im Ordner `c:/astrobodger/Reference/Neon.dat (NEU)!`³

<table>
<thead>
<tr>
<th>Wellenlänge (Å)</th>
<th>Linie</th>
<th>NeI</th>
<th>Wellenlänge (Å)</th>
<th>Linie</th>
<th>NeI</th>
<th>Wellenlänge (Å)</th>
<th>Linie</th>
<th>NeI</th>
</tr>
</thead>
<tbody>
<tr>
<td>5944.8342</td>
<td>NeI</td>
<td></td>
<td>5975.534</td>
<td>NeI</td>
<td></td>
<td>8300.3263</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>3417.9035</td>
<td>NeI</td>
<td></td>
<td>6029.9971</td>
<td>NeI</td>
<td></td>
<td>8377.6065</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>3472.5711</td>
<td>NeI</td>
<td></td>
<td>6074.3377</td>
<td>NeI</td>
<td></td>
<td>8495.3598</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>3515.1900</td>
<td>NeI</td>
<td></td>
<td>6096.1631</td>
<td>NeI</td>
<td></td>
<td>8591.2583</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>3593.5263</td>
<td>NeI</td>
<td></td>
<td>6128.4499</td>
<td>NeI</td>
<td></td>
<td>8634.647</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>3600.1691</td>
<td>NeI</td>
<td></td>
<td>6143.0626</td>
<td>NeI</td>
<td></td>
<td>8654.3831</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>4488.0926</td>
<td>NeI</td>
<td></td>
<td>6163.5939</td>
<td>NeI</td>
<td></td>
<td>8655.522</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>4636.125</td>
<td>NeI</td>
<td></td>
<td>6217.2812</td>
<td>NeI</td>
<td></td>
<td>8679.493</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>4837.3139</td>
<td>NeI</td>
<td></td>
<td>6266.495</td>
<td>NeI</td>
<td></td>
<td>8681.921</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5005.1587</td>
<td>NeI</td>
<td></td>
<td>6304.789</td>
<td>NeI</td>
<td></td>
<td>8704.111</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5031.3504</td>
<td>NeI</td>
<td></td>
<td>6334.4278</td>
<td>NeI</td>
<td></td>
<td>8771.656</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5104.7011</td>
<td>NeI</td>
<td></td>
<td>6382.9917</td>
<td>NeI</td>
<td></td>
<td>8780.621</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5113.6724</td>
<td>NeI</td>
<td></td>
<td>6402.246</td>
<td>NeI</td>
<td></td>
<td>8783.75</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5144.9384</td>
<td>NeI</td>
<td></td>
<td>6506.5281</td>
<td>NeI</td>
<td></td>
<td>8830.907</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5188.6122</td>
<td>NeI</td>
<td></td>
<td>6532.8822</td>
<td>NeI</td>
<td></td>
<td>8853.867</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5330.7775</td>
<td>NeI</td>
<td></td>
<td>6598.9529</td>
<td>NeI</td>
<td></td>
<td>8919.5007</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5341.0938</td>
<td>NeI</td>
<td></td>
<td>6678.2764</td>
<td>NeI</td>
<td></td>
<td>9148.672</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5360.0121</td>
<td>NeI</td>
<td></td>
<td>6717.043</td>
<td>NeI</td>
<td></td>
<td>9201.759</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5400.5617</td>
<td>NeI</td>
<td></td>
<td>6929.4673</td>
<td>NeI</td>
<td></td>
<td>9300.853</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5562.7662</td>
<td>NeI</td>
<td></td>
<td>7024.0504</td>
<td>NeI</td>
<td></td>
<td>9326.507</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5656.5664</td>
<td>NeI</td>
<td></td>
<td>7032.4131</td>
<td>NeI</td>
<td></td>
<td>9425.379</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5689.8163</td>
<td>NeI</td>
<td></td>
<td>7173.9381</td>
<td>NeI</td>
<td></td>
<td>9486.68</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5719.2248</td>
<td>NeI</td>
<td></td>
<td>7245.1666</td>
<td>NeI</td>
<td></td>
<td>9534.163</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5748.2985</td>
<td>NeI</td>
<td></td>
<td>7438.899</td>
<td>NeI</td>
<td></td>
<td>9665.424</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5764.4188</td>
<td>NeI</td>
<td></td>
<td>7488.8712</td>
<td>NeI</td>
<td></td>
<td>10798.12</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5804.4496</td>
<td>NeI</td>
<td></td>
<td>7535.7739</td>
<td>NeI</td>
<td></td>
<td>10844.54</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5820.1558</td>
<td>NeI</td>
<td></td>
<td>8136.4057</td>
<td>NeI</td>
<td></td>
<td>11143.02</td>
<td>NeI</td>
<td></td>
</tr>
<tr>
<td>5852.4878</td>
<td>NeI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5881.895</td>
<td>NeI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.2 Wellenlängenkalibrierung des Spektrums des Referenzspektrums

Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich $\text{H}\alpha$

- **Enter Line Calibration Mode**
- **Erste Referenzline 6334.4278Å eng eingrenzen**
- **Element filter: Neon.dat auswählen**
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

Add Another Point
Referenzline eng eingrenzen: 6382.9917Å

Add Another Point
Referenzline eng eingrenzen: 6402.246Å
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

- Add Another Point
- Referenzline eng eingrenzen: 6506.5281 Å
- Suggest bietet an: …… Die korrekte Wellenlänge 6506.5281 Å wird angeboten

- Add Another Point
- Referenzline eng eingrenzen: 6532.882 Å
- Suggest bietet an: 6532.882 Å

- Calibration fit umstellen auf 2 Quadratic (Polynom zweiten Grades). Restfehler nun: 0.02122 Å
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

➔ Add Another Point
➔ Referenzline eng eingrenzen: 6598.9529 Å
➔ Suggest bietet an: 6598.9529 Å

➔ Calibration fit umstellen auf 3 Cubic (Polynom dritten Grades). Restfehler nun: 0.018 Å

➔ Add Another Point
➔ Referenzline eng eingrenzen: 6678.276 Å
➔ Suggest bietet an: 6678.276 Å
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

➔ Add Another Point
➔ Referenzline eng eingrenzen: 6717.043 Å
➔ Suggest bietet an: 6717.043 Å

➔ Vorläufiger Restfehler nun: 0.016 Å

Es ist nicht sinnvoll, hier einen höheren Polynomgrad als 3 oder maximal 4 zu wählen. Der Dispersionserlauf des Spektrographen entspricht einer flachen Kurve, die sich nur gerinflig von einer linearen Funktion unterscheidet.

Wir können probieren, die Genauigkeit durch Deaktivieren bzw. Löschen der ungenauesten der 8 Linien zu erhöhen. Betrachten wir, wie sich die Deaktivierung auf den Bereich um die Hα-Linie auswirkt.

Da wir später den Bereich der Hα-Linie ausmessen wollen, interessiert uns dieser Bereich besonders.
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich $\text{H}\alpha$

Hinweis: Seit Version 1.9.8b4 kann man „ungenaue“ Stützpunkte deaktivieren/aktivieren und das Polynom jeweils neu berechnen lassen: Man setzt ein Minuszeichen vor die Pixelposition einer Linie, die nicht berücksichtigt werden soll. Nun klickt man in eine andere Zeile, was die Neuberechnung auslöst. Mit Löschen des Minuszeichens kann die Linie wieder aktiviert werden.

Man kann nun solange Linien aktivieren und deaktivieren, bis eine befriedigende Genauigkeit entweder im Zielbereich $\text{H}\alpha$ oder über den gesamten Bereich erreicht ist.

Allerdings sollte man immer das Ziel der Maßnahme im Auge behalten. Wenn man sich auf einen Bereich konzentriert, sollte man in dessen Nähe mehr Referenzlinien wählen.

Die Wellenlängenkalibrierung verbessert sich erheblich auf $\text{RMS}=0.00264\,\text{Å}$ verbessert.

- Finish
- Speichern
8.3 Übertragung der Wellenlängenkalibrierung auf das Spektrum von zeta Tau

➔ 02: zeta tau 2018-02-17 anwählen
➔ Profile properties 02: zeta tau 2018-02-17
➔ Use Calibration from first profile
➔ Copy
➔ Ok
➔ Apply
➔ Ok
➔ jeweils speichern

➔ Image Strip View umstellen auf Synth Color stretched (synthetisches Sternspektrum)
➔ Speichern des Projekts unter dem selben Namen zeta tau 2018-02-17.bass

➔ Show/Hide Calibration Points: Schaltet die Anzeige der Kalibrierpunkte ein und aus!

Ausblenden des Referenzspektrums #01

➔ Rechte Maustaste auf Spektrum #01:
➔ Linke Maustaste auf Spektrum 02: zeta Tau mit der Maus aktivieren:
➔ Falls gewünscht, Farbe ändern:
9. Normierung der relativen Intensität des Spektrums

Auf zwei verschiedene Arten können diese Einflüsse beseitigt werden: Normierung auf „1“ oder Flusskalibrierung.

9.1 Pseudokontinuum entfernen

Unter der **Normierung eines Spektrums** versteht man die Eliminierung des pseudokontinuierlichen Anteils im Spektrum (Contuum Removal), so dass nur noch die Spektrallinien im Spektrum verbleiben.

Division durch das Kontinuum: Die relativen Intensitäten bleiben erhalten, das Divisionsergebnis ergibt im Spektrum im Idealfall einen exakt horizontalen Verlauf, dessen Intensität den Wert „1“ aufweist. Deshalb spricht man auch von der **Normierung auf „1“**. Dies wird im Folgenden beschrieben.

1. Durchführung einer Normierung des gesamten Spektrums

 - Spektrum 02: zeta Tau an Position 1 bringen
 - Hide Profile from chart 01: Neon-Referenz
 - Spektrum 01: zeta Tau aktivieren

 - Continuum and Response Shaper anwenden auf 01:zeta Tau

 - Free Draw wählen

 - Kästchen setzen per Doppelklick entlang des Kontinuums.

Be-Stern \(\zeta \) Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich H\(\alpha \)

⇒ Save as Continuum Removal for: 02 \(\zeta \) Tau

⇒ Normierung direkt anwenden: Abfrage mit Ok beantworten
Ergebnis: Das (vollständig) normierte Spektrum.

➔ Falls das durchschnittliche Kontinuum in Bereichen NICHT auf einer horizontalen Linie liegt, kann das Pseudokontinuum nochmals editiert werden.

➔ Response ➔ Edit

➔ Target Profile: 01 zeta Tau

➔ Free Draw

➔ Neue Kästchen können gesetzt und/oder alte entfernt werden. Löschen durch Drücken auf das Mausrad!

➔ Save
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

Ok

Projekt zwischendurch immer mal speichern:
C:\astrobodger\zeta Tau 2018-02-17\zeta Tau 2018-02-17.bass

Ansicht Vorher/Nachher: Wie sieht das Profil mit bzw. ohne Kontinuumsentfernung aus?

Profile Properties
Response
Continuum Removal ↔ No Response Correction
Jeweils Apply

Ok
9.2 Normierung auf „1“

„Normierung auf 1“ bedeutet, dass das Kontinuum auf den Wert 1 festgelegt wird.

Zunächst sicherstellen, dass das Spektrum von zeta Tau an Position 1 steht: 01: zeta Tau 2018-02-17

⇒ Falls nicht, mit rechter Maustaste in das zeta-Tau-Spektrum klicken
⇒ Sequence
⇒ #01 auswählen

Falls links und rechts unerwünschte Bereiche sind, diese nun ausgrenzen. Ein vollständiges Entfernen aus dem Datensatz ist in dieser späten Phase aber nicht mehr möglich:

⇒ Mit der linken Maustaste das Spektrum wie gewünscht eingrenzen
⇒ Crop X-Axis Range
⇒ Wellenlängenbereich eingrenzen mit der Maus.
⇒ Apply
⇒ File ➔ Save Project File

Normierung auf „1“ durchführen:

⇒ Image
⇒ Normalize Flux Scale
⇒ Im Spektrum einen Bereich definieren, der den Wert 1 erreichen soll. Hier bei ca. 6000Å-6100Å
⇒ Falls unzufrieden mit der Lage der „1“-Linie, neue Start- oder Endwerte eingeben und Apply drücken.
⇒ Falls zufrieden: Close

9.3 Manuelle Skalierung der Y-Achse (Flux, relative Intensität)

Die manuelle Skalierung der Y-Achse (Flux) des Spektrums von zeta Tau beträgt in diesem Beispiel 0 bis 2:

Skalierung der Y-Achse

- **Profile Properties**
- **Save Property Settings**
- **Apply**
- **Ok**

Ergebnis: Das auf „1“ normierte Sonnenspektrum, in der Intensität von 0 bis 2 skaliert. Das Referenzspektrum bleibt ausgeblendet.

File ➔ Save Project File
10. Beschriftung des normierten Spektrums

- Hα-Ruhwellenlänge einzeichnen
- Label the chart
- Manage Labels
- Speichern
- Projekt speichern
- Edit Label
- Speichern
- Projekt speichern
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

➔ Speichern des Projekts mit allen Skalierungen und Beschriftungen: zeta Tau 2018-02-17.bass

11. Notizen erstellen und einblenden

➔ Chart Settings

12. Speichern eines 1D-Profils (Wellenlänge, Intensität) im FITS-Format

➔ Speichern des Spektralprofils (_1D), um es bsp. in VisualSpec oder MIDAS zu verarbeiten:
 zeta Tau 8x120s-1D.fit
13. Datenerfassung im 1D-Profil für die BeSS-Datenbank

13.1 Zeta Tau in der BeSS-Datenbank

Zeta Tau ist ein klassischer Be-Stern, dessen Spektren mit anderen in der BeSS-Datenbank verglichen oder zugeführt werden können. Gibt man im Abfrage-Fenster zeta Tau ein, werden Anfang März 2018 insgesamt 2548 Spektren angeboten:

<table>
<thead>
<tr>
<th>#</th>
<th>Be-Stern</th>
<th>Category</th>
<th>RA (h m s)</th>
<th>DEC (deg m s)</th>
<th>V</th>
<th>Type</th>
<th>va sin (km/s)</th>
<th>Anzahl der Spektren</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>zeta Tau</td>
<td>Classical</td>
<td>05 37 38.69</td>
<td>21 08 33.16</td>
<td>3.03</td>
<td>B2IVe</td>
<td>245</td>
<td>2548</td>
</tr>
</tbody>
</table>

This page allows you to query the catalogue of Be stars for informations. Warning: when a parameter (e.g. va sin) is used in a query, only stars for which this parameter is defined in BeSS are returned.

Be stars Abfrage

z. Zt. vorhanden 2330 Be Sternen im BeSS-Katalog

Spektren, die im Vergleichszeitraum mit höherer spektraler Auflösung (LHIRES III) aufgenommen wurden:

http://basebe.obspm.fr/basebe/
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

13.2 Öffnen des 1D-Profils

![Image of Open Image Files window]

13.3 BeSS-Settings

![Image of BeSS Settings window]
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich $H\alpha$
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

Doppler Shift

- **Doppler shift of target (km/s)**: -27.1251150078
- **Interval (Å/pixel)**: 0.4388428
- **Linear Interpolation**: False

[Create Profile] [Close]

BESS Settings 02: zeta tau 8x120s-1d_VC-27.12511

- **Applied Heliocentric Correction (km/s)**: -27.12511
- **Heliocentric Correction to be applied (km/s)**: -27.12511

- **Atmospheric line correction**: none
- **Cosmic ray removal**: removed, no indication of method
- **Normalisation (continuum removal) applied**: Applied (BASS Project software)
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

Dieses heliozentrisch korrigierte 1D-Profil kann nun mit Validate BeSS geprüft werden

Export des RV-unkorrigen 1D-Spektrums

Export des RV-korrigen 1D-Spektrums
13.4 Der FITS-Header
Hier der von BASS bisher geschriebene FITS-Header:

➔ Image ➔ FITS Header …

Hier der von BASS bisher geschriebene FITS-Header:
14. Erfassung der Messgrößen EW, V, R, CA, HRV-CA

Im von Ernst Pollmann modierten Langzeit Monitoring des Sterns zeta Tau sind folgende Messgrößen bei der Hα-Linie zu ermitteln:

➢ Hα-Äquivalentbreite EW: 6520Å-6600Å
➢ Intensität des Hα V-Peaks
➢ Intensität des Hα R-Peaks
➢ V/R-Verhältnis der Hα-Linie
➢ Tiefe der zentralen Absorption (CA) der Hα-Linie
➢ Heliozentrische Radialgeschwindigkeit HRV des Hα-Absorptionsminimums (HRV-CA)

➢ Öffnen des heliozentrisch korrigierten Spektrums

➢ Crop X-Axis Range

➢ Profile Properties

6 http://www.astrospectroscopy.de/projects.html
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

- Measurements and Elements
- Element File: LambdaData.dat
- Measurement Options: Equivalent Width

EW = -10.49 Å
V = 1.938
R = 1.779
CA = 1.186
V/R = 1.089

HRV-CA = +33.19 km/s
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

Messung der HRV der Zentralen Absorption (HRV-CA) nach Umstellung der Wellenlängenskala auf eine Geschwindigkeitsskala, bezogen auf Hα=6562.85Å:

Die heliozentrische Radialgeschwindigkeit der zentralen Absorptionseinsenkung beträgt \(HRV = +33.19 \text{ km/s} \)

Bestimmung der spektralen Auflösung anhand der Linien des Neon-Referenzspektrums:
Mittelwert 6532Å bis 6717Å: \(R = 6786 \pm 400 \). FWHM = 0.97Å ± 0.01Å (Apparatebreite)
15. Das Langzeitmonitoring\(^7\) des Sterns zeta Tau bis 17.2.2018 (JD 58167)

1. Äquivalentbreite EW der H\(\alpha\)-Linie

2. Intensitätsverhältnis V/R der der H\(\alpha\)-Linie

\(^7\) Ernst Pollmanns Auswertung des eingesandten normierten Spektrums
Be-Stern ζ Tau (B2 IVe)
Kalibrierung mit einer Neon-Lampe im Bereich Hα

3. Intensitätsverhältnis der zentralen Absorption (CA) der Hα-Linie

\[\frac{F_c}{F_c} \]

JD 2400000 +

Observer:
Garde, Graham, Thiry, Hanisch, Guarro,
Lester, Favaro, Pollmann, Zurmühl, Bull,
Sawicki, Bertrand, Brysinski, Koch
16. Übertragung des Projekts an einem anderen Ort („Bundles“)

Frage: Wie überträgt man die ursprüngliche Kalibrierung .bass von C:/astrobodger/... auf eine andere Festplatte und/oder in einen anderen Ordner, um sie von dort aus aufrufen zu können?

Antwort: Man öffnet wie gewohnt in c:/astrobodger zeta Tau 2018-02-17 die BASS-Datei (Beispiel: zeta Tau 2018-02-17.bass) und speichert das Projekt im neuen Ordner wie folgt als „Bundle“ ab:

Speichern als Bundle am neuen Ort:

- File
- Save Project or Bundle
- D:/neuer Ordner/zeta Tau 2018-02-17.bass

Entpacken des Bundles am neuen Ort

- File
- Open Project or Bundle
- D:/neuer Ordner/zeta Tau 2018-02-17.bass
- Dort öffnet man die .bass-Datei des Projekts und arbeitet wie gewohnt weiter.
17. Kurse zur Sternspektroskopie am CFG Wuppertal

Das Tutorials zur Kalibrierung eines Sonne-, bzw. Sternspektrums werden in den Kursen des Autors (rechts im Bild) am Carl-Fuhlrott-Gymnasium in Wuppertal zur Sternspektroskopie eingesetzt. Im Rahmen des Kurses wird u.a. das Tageslichtspektrum mit insgesamt sieben zur Verfügung stehenden DADOS-Spektrografen und ebenso vielen STF-8300M CCD-Kameras aufgenommen und für die Kalibrierung mit BASS vorbereitet.

Aktuelle Kursinformationen finden Sie unter:

https://www.baader-planetarium.com/de/blog/aktuelle-spektroskopie-kurse-am-schuelerlabor-astronomie/